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ABSTRACT
Pt  nanoparticles  (PtNPs)  as  active  species  have  always  been  considered  as  one  of  the  best  semiconductor  materials  for
photocatalytic hydrogen production. In this study, a Schottky heterojunction has been successfully constructed by evenly loading
ultrafine PtNPs onto  a  triazine-based covalent  organic  frameworks (COFs).  This  strategy maintained the high activity  of  these
ultra-small  PtNPs  while  maximizing  the  utilization  of  the  Pt  active  sites.  The  fabricated  PtNPs@covalent  triazine-based
framework-1  (CTF-1)  composite  accomplished  a  significantly  high  rate  of  hydrogen  evolution  (20.0  mmol·g−1·h−1,  apparent
quantum efficiency (AQE) = 7.6%, at λ = 450 nm) with 0.40 wt.% Pt loading, giving rise to a 44-fold-increase in the efficiency of
the photocatalytic hydrogen production compared to the pristine CTF-1. Theoretical calculations revealed that the strong electron
transfer (Q(Pt) = −0.726 qe, in the analysis of Bader charge, Q(Pt) is the charge quantity transferred from Pt cluster to CTF-1, and
qe  is  the  unit  of  charge  transfer  quantity)  between  PtNPs  and  CTF-1  triggers  a  strong  interaction,  which  makes  PtNPs  being
firmly  attached  to  the  structure  of  CTF-1,  thereby  enabling  high  stability  and  excellent  hydrogen  production  efficiency.
Importantly, the hydrogen binding free energy (ΔGH*) of PtNPs@CTF-1 is much lower than that of the unmodified CTF-1, leading
to a much lower intermediate state and hence a significant improvement in photocatalytic performance. The overall  findings of
this  work  provide  a  new  platform  to  incorporate  metallic  NPs  into  COFs  for  the  design  and  fabrication  of  highly  efficient
photocatalysts.
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1    Introduction
Solar  energy has  been considered as  one of  the most  sustainable,
green,  and  competitive  energy  sources  to  resolve  the  crisis  of
global  energy  [1].  In  this  respect,  design and fabrication of  high-
efficiency  photocatalysts  is  a  highly  employed  approach  to  boost
the utilization of solar energy. In recent years, hydrogen evolution
plays a pivotal role in clean energy production to supersede non-
renewable  resources  such  as  fossil  fuels.  In  particular,  metal
sulfide,  metal  oxide,  graphitic  carbon  nitride  (g-C3N4),  metal-
organic  framework  (MOF),  and  covalent  organic  framework
(COF)  as  popular  semiconductors  have  been  developed  to
improve  the  process  of  hydrogen  production  [2−4].  Currently,
single semiconductor materials evidently have many shortcomings
in  the  field  of  photocatalytic  hydrogen  production,  such  as
underutilized  active  sites,  fast  recombination  of  photo-generated
electron–hole  (e–h)  pairs,  and  poor  stability.  Hybrid  composite
materials have been proposed to solve these problems [5, 6].

Due  to  its  low  hydrogen  evolution  overpotential,  noble  metal

platinum  (Pt)  has  always  been  the  preferred  co-catalyst  for
photocatalytic  water  splitting  [7−9].  A  direct  strategy  is  to  add
chloroplatinic  acid  and  semiconductor  materials  in  the  testing
system,  which  could  greatly  promote  hydrogen  evolution
performance  under  a  large  amount  of  Pt.  However,  in  this  way,
the  Pt  species  usually  cannot  be  recycled  [10−13].  In  order  to
enable  the  recycling  of  Pt,  a  strategy  of  loading  platinum
nanoparticles  (PtNPs)  onto  semiconductors  is  favorable.  PtNPs
can currently be generated from many semi-conducting materials
by in-situ photodeposition  [14].  However,  PtNPs  synthesized  by
this  method usually  have uneven size  distribution issues,  and are
prone  to  aggregation  on  the  carrier  [15].  Therefore,  it  is  very
crucial  to  synthesize  non-aggregated  PtNPs  with  a  uniform
particle size. In doing so, the introduction of polyvinylpyrrolidone
(PVP),  as  a  surface  capping  and  reducing  agent,  can  not  only
prevent  the  agglomeration  of  PtNPs,  but  also  make  the
nanoparticles  uniform  in  size,  thus  creating  more  catalytic  active
sites.

MOFs  or  two-dimensional  (2D)  COFs  are  excellent  supports
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for  PtNPs [16, 17].  Compared with  MOFs,  2D COFs have  better
chemical stability and have been widely used as photocatalysts for
photocatalytic  reactions  [18, 19].  Moreover,  some  advantages  of
2D COFs such as favorable pore structures, controllable skeletons,
and  small  band  gap  make  them  attractive  candidates  for
photocatalysis  [20, 21].  In  the  design  of  catalysts,  interaction
between  the  carrier  and  PtNPs  can  be  enhanced  by  the
introduction  of  N  atoms.  Meanwhile,  the  strong  interaction
between Pt and N atoms can also promote the electron transfer in
the  photocatalytic  reaction  [22].  Therefore,  we  choose  covalent
triazine-based  frameworks  (CTFs)  as  support  materials  [23].
Constructed  by  covalent  and  aromatic  triazine  bonds,  CTFs  are
similar  to  graphite  materials,  having  large  conjugate  systems  and
high chemical/thermal stability.  In particular,  preparation process
of  CTFs  is  simple  and  low  cost,  and  these  stable  CTFs  can  be
reused  repeatedly  [24, 25].  Adding  Pt  cocatalyst  into  the  test
system  can  greatly  improve  the  catalytic  performance,  while
modification of CTFs can also improve its photocatalytic capacity.
For  example,  CTF-1  with  better  crystalline  can  reach  an  average
H2 evolution  rate  of  1.07  mmol·g−1·h−1 after in-situ photo-
deposition of Pt [26]. Pretreating monomers by different acid-base
catalysts,  Wang  et  al.  obtained  a  series  of  CTF-Huazhong
University of Science and Technology (HUST) catalysts, and these
composites can promote the hydrogen production rate from 2.65
to 9.20 mmol·g−1·h−1 using Pt as cocatalyst [27, 28]. Different from
monomers  pre-modification,  the  abundant  nitrogen  source  of
CTF-1  can  also  provide  active  site  for  guest  materials  loading.
Doping  phosphorus  on  CTF-1  could  build  a  Pt–P–N  bond,
however,  this  composite  yielded  hydrogen  evolution  rate  of
0.61  mmol·g−1·h−1 with  Pt  as  cocatalyst  [29].  In  above-mentioned
experiments,  Pt  co-catalyst  was  directly  added  to  the
photocatalytic test system without adjustment. Compared with the
modification  schemes  focusing  on  CTFs,  strategies  based  on
synthesis  and effective loading of  ultrafine PtNPs are expected to
enhance hydrogen production performance.

Herein,  we  offer  a  facile  route  for  the  construction  of
PtNPs@CTF-1 composite, which is anticipated to largely improve
the  utilization  of  Pt,  thereby  achieving  efficient  hydrogen
production.  To  accomplish  this,  ultra-small  PtNPs  were  firstly
prepared  via  high  temperature  nucleation  method,  followed  by
loading  the  as-prepared  PtNPs  onto  black  CTF-1  by  post
decoration  method.  The  formation  of  this  PtNPs@CTF-1
composite  can  not  only  evenly  disperse  PtNPs,  but  also  stabilize
the  ultra-small  PtNPs  without  aggregation,  maintaining  the
high  activity  of  these  ultra-small  PtNPs.  Thus,  the  hydrogen
evolution  rate  upon  using  PtNPs@CTF-1  composite  has  been
boosted  greatly  with  a  low  Pt  loading  of  0.40  wt.%,  reaching  a
20.0 mmol·g−1·h−1 (apparent quantum efficiency (AQE) = 7.6%, at
λ =  450  nm),  which  is  a  44-fold-incease  in  the  efficiency  of  the
photocatalytic  hydrogen  production  compared  with  the  pristine
CTF-1.  Practically,  the  constructed PtNPs@CTF-1 composite  has
a good stability after passing the hydrogen generation test for four
cycles.  Additionally,  the  impedance  measurements  of  PtNPs@
CTF-1 have been significantly reduced with marked improvement
in  the  photocurrent.  Finally,  both  X-ray  photoelectron
spectroscopy (XPS) analysis  and density  functional  theory (DFT)
calculations show that there is a strong interaction between PtNPs
and  CTF-1.  Such  strong  interaction  force  can  make  the  PtNPs
adhere to CTF-1 firmly without falling off. Evidently, the obtained
hydrogen  binding  free  energy  (ΔGH*)  of  PtNPs@CTF-1  is  much
lower  than  that  of  unmodified  CTF-1,  allowing  the  hydrogen
production  process  of  the  composite  to  have  a  much  lower
intermediate state, thereby leading to a significant improvement in
photocatalytic performance. 

2    Experimental
 

2.1    Materials
1,4-Dicyanobenzene  (DCB),  zinc  chloride  (ZnCl2),  sodium
hydroxide  (NaOH),  PVP  (molecular  weight  10,000),  2,4,5,7-
tetrabromofluorescein disodium salt (EY), and chloroplatinic acid
hydrate  (H2PtCl6·6H2O)  were  purchased  from  Macklin.
Concentrated hydrochloric acid (36%–38%), ethanol, acetone, and
triethanolamine  (TEOA)  were  purchased  from  Greagent.  All
chemicals were directly used without further purification. 

2.2    Synthesis
 

2.2.1    Synthesis of CTF-1

The  synthesis  of  black  CTF-1  was  performed  by  the  traditional
method  (Fig. S1  in  the  Electroniuc  Supplementary  Material
(ESM)) [23]. The monomer DCB and ZnCl2 were added into the
ampere  tube  at  the  molar  ratio  of  1:1.  Under  the  protection  of
nitrogen, the tube was flame-sealed under vacuum and transferred
into the muffle furnace to react at 400 °C for 40 h with a heating
rate of 2 °C/min, and finally a black hard block solid was gotten.
After  grinding,  the  obtained  powder  was  rinsed  with  1  M
hydrochloric  acid  solution for  more  than 24  h,  and then washed
with  ethanol,  acetone,  and  water  successively.  Finally,  the  black
powder was obtained by drying overnight in an oven at 80 °C. 

2.2.2    Synthesis of PtNPs

The  PtNPs  were  synthesized  according  to  the  reported  method
with  some  modifications  [30, 31].  Typically,  101.5  mg
H2PtCl6·6H2O  and  142  mg  NaOH  were  added  in  20  mL  of
ethylene  glycol  in  a  Schlenk  tube.  The  solution  was  heated  to
160 °C and maintained for 2 h. Before it cooled down completely,
444 mg PVP was thoroughly dissolved in ethanol and added into
the  dark  brown  solution.  Then  the  as-synthesized  PtNPs  were
collected by centrifugation at 9000 rpm for 8 min. The sample was
then washed with acetone and trichloromethane for three times to
remove  excess  free  PVP.  The  brownish  yellow  PtNPs  were
reserved in ethanol for further use. 

2.2.3    Synthesis of PtNPs@CTF-1

1, 2, and 3 mL PtNPs ethanol solutions were taken and diluted to
5  mL,  respectively.  Then  10  mg  CTF-1  was  added  into  these
PtNPs  solutions  and  stirred  for  24  h,  separately.  Finally,  the
samples were recovered by suction filtration, and dried overnight
at  60  °C.  The  resulting  black  solid  powder  was  PtNPs@CTF-1
with  different  Pt  load  capacity  of  0.33  wt.%,  0.40  wt.%,  and
0.44  wt.%.  Because  of  the  highest  hydrogen  production
performance, 0.40 wt.% PtNPs@CTF-1 composite was explored as
the main material for a series of characterization. 

3    Results and discussion
 

3.1    Structure and characterization of PtNPs@CTF-1
The PtNPs@CTF-1 was synthesized by post modification method
in Fig. 1(a).  To  confirm  the  composition  of  the  synthesized
materials,  Fourier  transform  infrared  (FT-IR)  spectroscopy  and
powder  X-ray  diffraction  (PXRD)  analysis  were  undertaken.  As
shown  in Figs.  1(b) and 1(c),  the  FT-IR  spectra  and  PXRD
patterns  of  CTF-1  are  consistent  with  the  ones  reported  in
previous  literature,  indicating  successful  synthesis  of  the  black
CTF-1. There is no significant change in PXRD diffraction peaks
after PtNPs loading, which may be due to the low content of Pt in
the composite.  In the FT-IR spectra,  a  weak peak at  ~ 2235 cm−1
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corresponds  to –C≡N,  whereas  the  strong  peaks  at  1510  and
1350  cm−1 are  attributed  to  the  triazine  ring  [32].  These  peaks
indicated  that  the  cyano  groups  turned  into  the  triazine  rings
by  successful  polycondensation.  The  PXRD  patterns  of
PtNPs@CTF-1 and CTF-1 have two sets of intense XRD peaks. A
broad  peak  appeared  at  26.1°,  corresponding  to  an  interlayer
distance  of  3.4  Å  for  the  (001)  aromatic  ring,  while  the  peaks  at
7.3° are assigned to the (100) planes of CTF-1 [21, 22]. Due to the
low  loading  amount  and  good  distribution,  the  characteristic
diffraction  peaks  of  PtNPs  in  PXRD  patterns  are  not  observed.
Thermogravimetric  analysis  (TGA)  of  the  synthesized  CTF-1
revealed that the CTF-1 has a good thermal stability (Fig. S2 in the
ESM),  keeping  the  skeleton  intact  without  any  decomposition
until  600  °C.  This  result  matches  well  with  the  one  reported  in
previous literatures [33].

In  order  to  probe  the  morphology  of  PtNPs  on  the  CTF-1,
scanning  electron  microscopy  (SEM)  and  transmission  electron
microscopy  (TEM)  measurements  of  the  composite  material
(PtNPS@CTF-1)  were  performed.  SEM  images  revealed  that
CTF-1 has a flaky structure with a micrometer size (Fig. S3 in the
ESM).  The  mapping  spectroscopy  images  of  PtNPs@CTF-1
showed that both C and N elements have been evenly distributed
on the composite, whereas the distribution of Pt is almost invisible
due  to  the  low  content  loading.  Different  from in-situ photo-
reduction  preparation  method,  PtNPs  prepared  by  high
temperature process can reach a smaller size of 1.8 ± 0.2 nm (Figs.
2(a) and 2(b)) and a higher degree of uniformity. As shown in Fig.
2(c),  PtNPs  are  uniformly  loaded  on  CTF-1  without  any
agglomeration.  Such  uniform  distribution  plays  a  critical  role  in
promoting the exposure of photocatalytic active sites. Meanwhile,
the interplanar distance of PtNPs between the neighboring lattice
fringes  was  measured as  0.23  nm (Fig. 2(d)),  which was  assigned
to the (111) lattice plane of the Pt crystals [16, 17]. In addition, the

results  of  inductively  coupled  plasma-optical  emission
spectroscopy  (ICP-OES)  verified  that  the  actual  Pt  species
concentration  in  PtNPs@CTF-1  is  about  0.40  wt.%  (Table  S1  in
the ESM).

XPS  is  used  to  study  the  surface  chemical  composition  and
electronic  state  of  the  prepared  materials.  Firstly,  all  the  binding
energies  of  each  element  were  corrected  by  standard  carbon
spectrum (C 1s = 284.6 eV). Figure 3(a) shows the wide-scan XPS
spectra  of  CTF-1  and  PtNPs@CTF-1,  indicating  the  existence  of
carbon (C),  nitrogen (N), and a small  amount of oxygen (O). As
shown in Fig. 3(b), the C 1s spectra of CTF-1 and PtNPs@CTF-1
can  be  deconvoluted  into  three  peaks  at  284.3,  285.1,  and
286.8 eV, corresponding to sp2-hybridized carbon (C=C), triazinyl
carbon  (C=N–C),  and  the  characteristic  shake-up  line  of  the
aromatic carbon, respectively. After loading PtNPs, the C 1s peak
of  the  composites  showed  a  slight  positive  shift.  In  contrast,  the
XPS  characteristic  peak  of  N  shows  a  significant  shift  to  higher
binding  energy  in Fig. 3(c),  whose  binding  energy  changed  from
398.8 to 399.2 eV, corresponding to triazine N (C=N–C). This is
probably  due  to  the  existence  of  an  electron  flow  from  N  to  Pt,
giving  the  high  electron  density  of  the  catalytic  active  site.  As
shown in Fig. 3(d), the high resolution XPS spectrum of Pt 4f was
fitted with double peaks for the Pt 4f7/2 and 4f5/2. The peaks of pure
PtNPs  and  PtNPs@CTF-1  are  at  about  71.1  and  74.4  eV,  which
correspond  to  the  metal  Pt0.  Moreover,  the  peaks  of  Pt2+ are
evident  at  72.1  and  75.4  eV,  which  are  higher  than  metallic  Pt.
Therefore,  the  valence  states  of  Pt  in  PtNPs@CTF-1  sample  are
Pt2+ and  Pt0.  The  above  results  indicate  that  there  is  a  strong
interaction between PtNPs and CTF-1 [34−36]. 

3.2    The photocatalytic performance of Pt@CTF-1
After  confirming  the  composition  of  PtNPs@CTF-1,  H2
generation  experiments  were  performed  under  visible  light  (λ >

 

Figure 1    (a)  Schematic  diagram  illustrating  the  synthesis  process  of  PtNPs@CTF-1  catalyst.  (b)  FT-IR  spectra  of  CTF-1  and  PtNPs@CTF-1.  (c)  XRD  pattern  of
CTF-1 and PtNPs@CTF-1.
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420 nm),  with  TEOA as  the  sacrificial  electron donor  and EY as
the  photosensitizer  (Fig. 4(a) and Fig. S4  in  the  ESM).  The
hydrogen  evolution  rate  of  CTF-1  is  determined  to  be
0.45  mmol·h−1·g−1.  As  expected,  the  deposition  of  PtNPs  onto
CTF-1  with  0.4  wt.%  Pt  content  (PtNPs@CTF-1)  achieves  a
maximum hydrogen evolution rate of 20.00 mmol·h−1·g−1 (AQE =
7.6%,  at λ =  450  nm),  which  is  one  of  the  highest  values  among
the reported photocatalytic systems with Pt as cocatalyst (Table S2
in the ESM). Meanwhile, the H2 evolution rate of 0.34 wt.% Pt on
CTF-1  and  0.44  wt.%  Pt  on  CTF-1  reached  17.00  and
14.92  mmol·h−1·g−1,  respectively.  This  finding  demonstrates  that
0.40  wt.%  Pt  content  gave  the  best  photocatalytic  activity.  After

four cycles of hydrogen evolution testing, the hydrogen evolution
efficiency  of  PtNPs@CTF-1  catalyst  can  reach  about  83%.  Then
FT-IR and PXRD were carried out to testify the durability of  the
composite.  The  results  showed  that  there  are  no  significant
changes  in  the  pattern,  proving  the  high  stability  of  the  catalyst
(Fig. 4(b) and Fig. S5 in the ESM). Taken together, the combined
results clearly establish that the addition of PtNPs has significantly
increased the hydrogen evolution rate of CTF-1.

To explore the photocatalytic mechanism of PtNPs@CTF-1, the
ultraviolet–visible–diffuse  reflectance  spectra  (UV–vis–DRS)  and
photoelectrochemical  tests  were  conducted  in Fig. 4(c).  The
UV–vis–DRS  spectra  of  the  CTF-1  and  PtNPs@CTF-1  have  full

 

Figure 2    (a) TEM image of PtNPs at the bar of 20 nm. (b) The statistics of particle size distribution. (c) TEM image of PtNPs@CTF-1 at the bar of 50 nm. (d) TEM
image of PtNPs@CTF-1 at the bar of 10 nm with the inset of the interplanar distance for PtNPs.
 

Figure 3    (a)  The XPS full  spectra  of  CTF-1 and PtNPs@CTF-1.  (b)  C 1s  XPS spectra  of  CTF-1 and PtNPs@CTF-1.  (c)  N 1s  XPS spectra  of  CTF-1 and PtNPs@
CTF-1. (d) Pt 4f XPS spectra of PtNPs and PtNPs@CTF-1.
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absorption in the visible region, which matches the black character
of  the  material  [37, 38].  According  to  the  calculation  of  optical
band  gaps  (Fig. S6  in  the  ESM),  the  band  gaps  values  of  CTF-1
and  PtNPs@CTF-1  are  2.42  and  2.38  eV,  respectively.  The
Mott–Schottky  (M–S)  measurements  (Fig. S7  in  the  ESM)  were
performed and the results indicate that PtNPs@CTF-1 and CTF-1
are  n-type  semiconductors.  The  calculated  flat  band  potential
(VFB) of CTF-1 is −0.82 V vs. Ag/AgCl, which fits the M–S curves
of  three  different  frequencies.  Upon  loading  PtNPs,  the VFB of
PtNPs@CTF-1 changes  to −0.94 V vs.  Ag/AgCl.  The conduction
band  value  (VCB)  of  PtNPs@CTF-1  is  about −0.74  V  vs.  normal
hydrogen  electrode  (NHE),  whereas  the  potential  of  the  valence
band value  (VVB)  of  PtNPs@CTF-1  is  1.64  V vs.  NHE,  based  on
the  band  gap  results  (pH  =  7).  It  can  be  seen  from  these  results
that  PtNPs@CTF-1  has  a  suitable  band  gap  structure  for  H2
evolution reaction from H2O (Fig. 4(d)).

In  conclusion,  the  hydrogen  production  mechanism  of
PtNPs@CTF-1  can  be  summarized  as  follows:  When  the
PtNPs@CTF-1  composite  is  irradiated  by  visible  light,  the
semiconductor CTF-1 is  excited to generate e–h pairs,  where the

electrons  transfer  to  conduction  band  and  the  holes  stay  on  the
valence  band  of  CTF-1.  Simultaneously,  the  ground  state  of  EY
absorbs  photoelectrons,  converting  to  the  singlet  excited  state
EY1*.  Through  the  intersystem  transition,  it  converts  to  a  more
stable  triplet  excited  state  EY3*.  While  the  TEOA molecules  with
strong  reducing  ability  accessed  into  the  solution,  occupying  the
hole  of  the  CTF-1  and  preventing  the  photo-induced  electrons
from  moving  to  the  valence  band  of  CTF-1  around  hydrogen
production. Meanwhile, the TEOA is oxidized to TEOA+ thereby
assisting  EY3* to  convert  into  EY− [39, 40].  Then,  the  electrons
from  these  processes  will  transfer  to  the  PtNPs  to  combine  with
H2O, leading to the formation of H2 (Fig. 5).

Photoluminescence (PL) spectra (Figs. 6(a) and 6(b)) were used
to verify the separation ability of photoelectron–hole pairs. Under
the excitation of 380 nm, a strong emission peak at 554 nm caused
by  the  EY  is  presented.  When  the  CTF-1  is  added  to  the  test
solution, the altitude of emission peak is slightly weakened. Upon
adding  PtNPs@CTF-1,  the  emission  peak  changes  evidently,
which is caused by the sluggish recombination of photogenerated
electrons and holes. The electrochemical impedance spectroscopy
(EIS) and photocurrent response (Figs. 6(c) and 6(d)) were used to
further  verify  the  in-depth  photophysical  mechanism.  It  follows
that the semicircle of Nyquist curve of PtNPs@CTF-1 is extremely
smaller  than  CTF-1  under  the  visible  light,  indicating  that  the
impedance  of  the  composite  has  been  greatly  reduced  and  the
kinetics  performance  of  the  composite  has  been  significantly
improved.  The overall  results  clearly  indicate  that  PtNPs@CTF-1
is more conducive for electron transfer. Whereas the photocurrent
results  implied  that  the  light-response  ability  is  obviously
improved  after  loading  of  PtNPs,  reflecting  that  the  composite
material has good photo-response abilities. 

3.3    The DFT theoretical calculation of PtNPs@CTF-1
To  further  explore  the  interaction  between  PtNPs  and  CTF-1
along  with  the  study  of  the  dynamic  mechanism  of  the
photocatalytic  hydrogen  evolution  reaction  (HER),  dynamic
simulations  and  DFT  calculations  were  performed.  After
optimization  (Fig. 7 and Fig. S8  in  the  ESM),  the  maximum

 

Figure 4    (a)  Photocatalytic  H2 evolution  rates  of  pure  CTF-1  and  PtNPs@CTF-1.  (b)  Photocatalytic  H2 amount  produced  by  PtNPs@CTF-1  in  four  consecutive
cycles. (c) UV–vis diffuse reflectance spectra of CTF-1 and PtNPs@CTF-1. (d) The reaction mechanism for PtNPs@CTF-1.

 

Figure 5    The  mechanisms  of  photocatalytic  hydrogen  evolution  over
PtNPs@CTF-1.
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distance between the two nitrogen atoms in the channel of CTF-1
is 14.60 Å (Fig. S8(a) in the ESM). Based on this, the configuration
of PtNPs@CTF-1 is built with the Pt31 in the way of double-layer
superposition (Figs.  7(a) and 7(b)).  From the results of the Bader
charge  distribution  (Fig. S8(c)  in  the  ESM),  it  can  be  concluded
that there is a strong charge interaction (Q(Pt) = −0.726 qe, in the
analysis  of  Bader  charge, Q(Pt)  is  the  charge quantity  transferred
from  Pt  cluster  to  CTF-1,  and qe is  the  unit  of  charge  transfer
quantity) between the nanoparticles and carrier, which may be the
reason why PtNPs can be firmly fixed on CTF-1. With regard to
the electron distribution between N and Pt,  it  exhibits  significant
depletion of electrons on N atom, thus might manifest the transfer
of  electrons  from  N  atom  to  Pt.  It  is  consistent  with  the  XPS
results. Taken together, all the aforementioned results indicate that
the  strong  interaction  between  PtNPs  and  CTF-1  may  provide  a
good stability of the composite.

To  understand  the  difficulty  of  hydrogen  evolution  reaction,
ΔGH* is calculated (Fig. 7(c) and Fig. S9 in the ESM). The ΔGH* of
CTF-1  and  PtNPs@CTF-1  is  0.41  and −0.39  eV,  suggesting  that
the intermediate state of PtNPs@CTF-1 is lower in energy, which
is highly favored for hydrogen evolution reaction process. In view

of the obtained results, it can be concluded that good durability of
the  PtNPs@CTF-1  catalyst  may  be  attributed  to  the  electron
donation  process  occurring  between  PtNPs  and  CTF-1.
Meanwhile, the photocatalytic HER of water by PtNPs@CTF-1 is
thermodynamically favorable. 

4    Conclusions
In  summary,  a  hybrid  material  comprising  PtNPs@CTF-1  has
been  successfully  fabricated  with  the  characteristics  of  having
efficient  visible  light  response,  suitable  band  gap  matching,  and
effective  e–h  separation  ability  for  photocatalytic  hydrogen
production  via  water  splitting.  The  results  showed  that
PtNPs@CTF-1 with a loading capacity of 0.40 wt.% Pt gave rise to
a hydrogen production rate of 20.0 mmol·g−1·h−1 (AQE = 7.6%, at
λ =  450  nm),  which  is  much higher  than pure  CTF-1  and other
related hybrid materials. According to the result of XPS and DFT,
the  electron  transfer  (Q(Pt)  = −0.726 qe)  between  PtNPs  and
CTF-1  triggers  a  strong  interaction,  which  makes  PtNPs  being
firmly  anchored  to  the  structure  of  CTF-1,  giving  the  composite
very  good  stability  and  excellent  hydrogen  production  capacity.
Subsequently,  the  results  of  ΔGH* are  certified  that  the

 

Figure 6    (a)  PL spectra with EY. (b) Steady-state PL spectra without EY of CTF-1 and PtNPs@CTF-1.  (c)  EIS curves of  CTF-1 and PtNPs@CTF-1.  (d) Transient
photocurrent responses of CTF-1 and PtNPs@CTF-1 (under the xenon lamp, λ > 420 nm).
 

Figure 7    (a) Geometry structures for Pt31 NPs (the left image is the upward view, and the right image is the front view). (b) Geometry structures for Pt31@CTF-1. (c)
Calculated free energy of PtNPs@CTF-1 for the photocatalytic H2 evolution.
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PtNPs@CTF-1 composite material gave the hydrogen production
process  a  much  lower  intermediate  state,  thereby  leading  to  a
significant improvement in photocatalytic performance. This work
proposes  a  novel  strategy  for  combining  metallic  nanoparticles
with  CTFs  for  the  construction  of  highly  efficient  photocatalytic
hydrogen  production  catalysts,  facilitating  the  design  of  other
PtNPs/COFs hybrid materials for photocatalytic applications. 
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