Dr Ma Research Group

We are a synthetic inorganic and organic materials research group focusing on task-specific design and functionalization of advanced porous materials. The space within nanoporous materials provides virtually unlimited room for imagination, allowing designed incorporation of different functionalities for numerous potential applications. The research of our group aims to engineering the nanospace of advanced porous materials including metal-organic frameworks (MOF), covalent organic framework (COF) and porous organic polymer (POP) for energy/biological/environmental-related applications centered on the following topics:





1. Rational design and functionalization of MOF materials for catalysis


 

Metal-organic frameworks (MOFs) are highly crystalline inorganic-organic hybrids, and they are constructed by assembling metal ions or metal-containing clusters with multidentate organic ligands via coordination bonds into a three-dimensional structure. Our interest lies in rational design and functionalization of MOFs for applications in catalysis with focus on:

(1) Development of MOFs as a new platform for CO2 chemical transformation

(2) Exploration of MOFs as a new paradigm for small molecule activation

(3) Development of MOFs as a new type of solid acid catalysts

(4) Development of new methodologies to encapsulate functionalized species into the nanospace of MOFs for catalysis

 

 
 
Representative publications: Angew Chem. Int. Ed., 2014, 53, 2615-2619 (pdf); J. Am. Chem. Soc., 2014, 136, 1202-1205 (pdf); J. Am. Chem. Soc., 2015, 137, 4243-4248 (pdf); Angew Chem. Int. Ed., 2016, 55, 5472-5476 (pdf); Small. 2016, 12, 6309-6324 (pdf); Angew Chem. Int. Ed., 2018, 57, 4657-4662 (pdf); Angew Chem. Int. Ed., 2018, 57, 10107-10111 (pdf); Chem, 2018, 4, 2587-2599 (pdf); Angew Chem. Int. Ed., 2019, 58, 7420-7424 (pdf); ChemSusChem, 2020, 13, 6273-6277 (pdf); Small, 2021, 17, 2100762 (pdf); ACS Appl. Mater. Interfaces, 2021, 13, 52023-52033 (pdf); Angew Chem. Int. Ed.202261, e202114071 (pdf); Chem Cat. 2022, 2, 439-457 (pdf); Angew Chem. Int. Ed.202362, e202213399 (pdf); J. Am. Chem. Soc. 2023, 145, 14994–15000 (pdf); CCS Chemistry, 20235, 1989-1998 (pdf); ACS Cent. Sci. 2023, 9, 1692-1701 (pdf); J. Am. Chem. Soc. 2024, 146, DOI: 10.1021/jacs.3c11607 (pdf). Up



2. Exploration of mesoporous MOF/COF as a new type of platform for enzyme/protein/drug immobilization


 

Enzymes are becoming increasingly important in sustainable technology and green chemistry due to their wide applications in various fields such as pharmaceuticals, chemical/fine-chemical syntheses, food industries, biosensors, biofuel cells, nanobioelectronics, etc. However, the application of enzymes in those fields, particularly as biocatalysts that feature high reactivity, selectivity, and specificity under mild conditions, is usually hampered by their low operational stability, difficult recovery, and lack of reusability. Immobilization of enzymes/proteins on solid supports can enhance enzyme stability as well as facilitate separation and recovery for reuse while maintaining activity and selectivity. Mesoporous MOFs/COFs (mesoMOFs/COFs) merit high surface areas and pore walls composed of functional organic groups which could afford specific interactions with protein/enzyme molecules thus avoiding leaching. This makes them very promising to be developed as a new type of host matrix materials to immobilize proteins/enzymes/drugs for biocatalysis and biomedical applications as well as to understand the behaviors of proteins/enzymes/drugs in biological systems.

 

 



 
Representative publications: J. Am. Chem. Soc. 2011, 133, 10382-10385 (pdf); J. Am. Chem. Soc., 2012, 134, 13188-13191 (pdf); Inorg. Chem., 2014, 53, 10006-10008 (pdf); Dalton Trans., 2016, 45, 9744-9753 (pdf); ACS Appl. Mater. Interfaces. 2017, 9, 10874-10881 (pdf); J. Am. Chem. Soc., 2018, 140, 984-992 (pdf); Angew Chem. Int. Ed. 2018, 57, 16754-16759 (pdf); J. Am. Chem. Soc., 2018, 140, 16032-16036 (pdf); Adv. Mater. 2019, 31, 1900008 (pdf); Chem, 2019, 5, 3184-3195 (pdf); ACS Cent. Sci., 2020, 6, 1497-1506 (pdf); Cell Reports Physical Science,2021, 2, 100576 (pdf); Sci. Adv., 2022, 8, eabm4677 (pdf); Biomaterials 2022, 281, 121322 (pdf); ACS Appl. Mater. Interfaces, 2023, 15, 677-683 (pdf); Nature Commun. 2023, 14, 973 (pdf); Small, 2024, 46, DOI: 10.1002/smll.202306940 (pdf). Up



3. Development of functional porphyrin-based framework materials


 

Porphyrin/metalloporphyrins are one of the cornerstones on which the existence of life is based, and essential biochemical, enzymatic, and photochemical functions depend on the special properties of the tetrapyrrolic macrocycle. Given the ubiquitous biological functions of metalloporphyrins in nature (for example light-harvesting, oxygen transportation and catalysis), building coordination architectures using custom-designed porphyrin ligands becomes exceedingly desirable in pursuance of mimicking their diverse biological functionalities. Our focus lies in rationally designing porphyrin-based framework materials inlcuding metal-metalloporphyrin frameworks (MMPFs), porous covalent porphyrin frameworks (PCPFs) followed by developing them for applications in heterogeneous catalysis, photocatalysis, light harvesting, etc.

 

 



 
Representative publications: J. Am. Chem. Soc., 2011, 133, 16322-16325 (pdf); Angew Chem. Int. Ed. 2012, 51, 10082-10085 (pdf); Chem. Sci., 2012, 3, 2823-2827 (pdf); Chem. Eur. J., 2013, 19, 3297-3301 (pdf); Chem. Mater. 2014, 26, 1639-1644 (pdf); Chem. Soc. Rev., 2014, 43, 5841-5866 (pdf); Inorg. Chem., 2016, 55, 7291-7294 (pdf); ACS Appl. Mater. Interfaces, 2016, 8, 18173-18181 (pdf); Chem. Commun, 2018, 54, 1170-1173 (pdf); Nature Commun. 2019, 10, 1913 (pdf); J. Am. Chem. Soc., 2019, 141, 14443-14450 (pdf); Angew Chem. Int. Ed., 2020, 59, 4354-4359 (pdf); ChemSusChem, 2020, 13, 6273-6277 (pdf); Angew Chem. Int. Ed., 202160, 24312-24317 (pdf); Nano Res., 202215, 1145-1152(pdf); Angew Chem. Int. Ed., 202362, e202304303 (pdf). Up
   




4. Task-specific design and functionalization of COF/POP materials for water treatment

 

Clean water is essential for all life forms to thrive, but when this life sustaining-source is contaminated by natural events or anthropogenic activities it becomes imperative to know the contaminant (detection) and rectify (decontamination) it to safe levels. Featuring framework robustness (high water/chemical stability) as well as amenability to design and functionalize, COFs/POPs hold great promise as a new type of water decontamination materials. We are interested in task-specific design and functionalization of COF/POP-based “nano-traps” for water treatment with focus on:

(1) Heavy metal removal

(2) Removal of oil and micro-pollutants

(3) Uranium extraction from seawater

(4) Radionuclide sequestration

 

 


  Representative publications: Nat. Commun. 2014, 5, 5537 (pdf); Chem. Sci., 2016, 7, 2138-2144 (pdf); Adv. Mater. 2017, 29, 1700665 (pdf); J. Am. Chem. Soc., 2017, 139, 2786-2793 (pdf); Nat. Commun. 2018, 9, 1644 (pdf); Adv. Mater. 2018, 30, 1705479 (pdf); Chem, 2018, 4, 1726-1739 (pdf); Trends in Chemistry 2019, 1, 292-303 (pdf); ACS Central Science, 2019, 5, 1352-1359 (pdf); Nature Commun. 2019, 10, 1646 (pdf); Acc. Chem. Res., 2020, 53, 812-821 (pdf); Angew Chem. Int. Ed., 202059, 19618-19622 (pdf); Adv. Sci. 2021, 2001573 (pdf); Adv. Funct. Mater. 202131, 2009970 (pdf); Small, 2021, 17, 2007994 (pdf); Nature Commun. 2021, 11, 1844 (pdf); Matter2021, 4, 2027-2038 (pdf); Angew Chem. Int. Ed., 202160, 14664-14670 (pdf);  ACS Cent. Sci., 2021, 7, 1650-1656 (pdf); Polym. Chem., 2022, 13, 156-160 (pdf); Science Bulletin, 2022, 67, 924-932 (pdf); CCS Chemistry, 2022, 4, 2294-2307 (pdf); Nature Commun. 2022, 12, 2132 (pdf); EnergyChem, 2022, 4, 100079 (pdf); Chem. Soc. Rev., 2023, 52, 97-162 (pdf); Angew Chem. Int. Ed.2023, 62, e202216724 (pdf); JACS Au,2023, 3, 239-251 (pdf); Nature Commun. 2023, 14, 1106 (pdf); Cell Rep. Phys. Sci.,2023, 4, 101220 (pdf); Sci. Adv., 2023, 9, eadh0207 (pdf); Environ. Sci. Technol. 2023, 57, 10870–10881 (pdf); Angew Chem. Int. Ed., 202362, e202303129 (pdf); Adv. Sci. 2023, 10, 2303536 (pdf); J. Am. Chem. Soc. 2024, 146, DOI: 10.1021/jacs.3c08160 (pdf); ACS Cent. Sci. 2024, 10, in press (pdf). Up



5. Rational design and functionalization of COF/POP materials for catalysis


 

Porous organic polymers (POPs) including covalent organic frameworks (COFs) have recently been advanced as a new type of porous materials for a broad range of applications. Given the fact that their nanospace can be decorated with various functionalities, we are interested in rational design and functionalization of COF/POP as a new type of platform for heterogeneous catalysis.

   
 


  Representative publications: Chem. Commun. 2014, 50, 8507-8510 (pdf); Chem, 2016, 1,628-639 (pdf); J. Am. Chem. Soc., 2016, 138, 15790-15796 (pdf); ACS Catal., 2017, 7, 1087-1092 (pdf); Mater. Chem. Front., 2017, 1, 1310-1316 (pdf); ACS Appl. Mater. Interfaces, 2019, 11, 3070-3079 (pdf); ACS Sustainable Chem. Eng., 2019, 7, 4878-4888 (pdf); Angew Chem. Int. Ed., 2019, 58, 8670-8675 (pdf); Nature Commun. 2019, 10, 3059 (pdf); Matter, 2020, 2, 416-427 (pdf); ACS Appl. Mater. Interfaces, 2020, 12, 32827-32833 (pdf); Small, 2021, 17, 2003970 (pdf); Angew Chem. Int. Ed.202261, e202114071 (pdf); Macromolecul. Rapid Commun. 202344, 2200724 (pdf). Up



6. Rational design and functionalization of MOF/POP/COF materials for gas storage and separation


 

Emerging as new classes of porous materials, MOFs/COFs/POPs feature high surface area, tunable pore sizes, and functionalizable pore walls, which make them be explored at the forefront for applications in gas storage and separation. Our interest lies in rational design and functionalization of MOFs/COFs/POPs for applications in hydrogen/methane storage at ambient temperatures, targeted gas separations, and removal of toxic/harmful gases.

   
 


 

Representative publications: Chem. Commun., 2010, 46, 44-53 (pdf); Chem. Commun., 2012, 48, 8898-8900 (pdf); Nature, 2013,495, 80-84 (pdf); J. Am. Chem. Soc., 2014, 136, 8654-8660 (pdf); Chem. Commun., 2015, 51, 2714-2717 (pdf); Chem. Commun., 2015, 51, 9636-9639 (pdf); J. Am. Chem. Soc., 2015, 137, 14875-14876 (pdf); Inorg. Chem., 2016, 55, 9071-9076 (pdf); ACS Central Science, 2018, 4, 1194-1200 (pdf); J. Mater. Chem. A, 2019, 7, 13585-13590 (pdf); Chem. Sci., 2019, 10, 6661-6665 (pdf); Angew Chem. Int. Ed., 2019, 58, 10138-10141 (pdf); Chem. Soc. Rev., 2020, 49, 708-735 (pdf); Nature Commun. 2020, 11, 5456 (pdf); Nano Res., 2021, 14, 512-517 (pdf); Angew Chem. Int. Ed., 2021, 60, 5283-5288 (pdf); Angew Chem. Int. Ed., 2021, 60, 9680-9685 (pdf); Chem. Sci., 2021, 12, 5767-5773 (pdf); J. Am. Chem. Soc., 2022, 144, 1681-1689 (pdf); Angew Chem. Int. Ed., 2022, 61, e202117807 (pdf); Nano Res., 2022, 15, 7559-7564 (pdf); Cell Rep. Phys. Sci.,2022, 3, 100977 (pdf); Angew Chem. Int. Ed., 202362, e202302564 (pdf). Up




7. Targeted synthesis of microporous carbon and nanostructured materials from MOFs/COFs/POPs

 

Porous carbons and nanostructred materials represent important classes of materials and have been widely utilized for a range of applications. Our interest lies in the employment of MOFs/COFs/POPs as precursors for the synthesis of microporous carbon materials and nanostructred oxide materials for applications in fuel cells, carbon capture, and energy storage.

 

 
 
Representative publications: Chem. Eur. J. 2011, 17, 2063-2067 (pdf); Chem. Commun., 2013, 49, 10269-10271 (pdf); CrystEngComm, 2015, 17, 10-22 (pdf); Chem. Commun. 2015, 51, 8683-8686 (pdf); Chem. Commun. 2016, 52, 13897-13900 (pdf); Catal. Sci. Technol., 2018, 8, 5244-5250 (pdf); ACS Nano, 2018, 12, 4594-4604 (pdf); J. Mater. Chem. A, 2019, 7, 3624-3631 (pdf); ACS Nano, 2019, 13, 8087-8098 (pdf); Chem. Sci., 2020, 11, 3523-3530 (pdf); CCS Chemistry, 2021, 3, 208-218 (pdf); Adv. Mater. 202133, 2106621 (pdf); eScience 20222,  227-234 (pdf); Adv. Sci. 2022, 9, 2201735 (pdf); The Innovation, 2022, 3, 100281 (pdf). Up